10 research outputs found

    Timely-automatic procedure for estimating the endocardial limits of the left ventricle assessed echocardiographically in clinical practice

    Get PDF
    In this paper, we propose an analytical rapid method to estimate the endocardial borders of the left ventricular walls on echocardiographic images for prospective clinical integration. The procedure was created as a diagnostic support tool for the clinician and it is based on the use of the anisotropic generalized Hough transform. Its application is guided by a Gabor-like filtering for the approximate delimitation of the region of interest without the need for computing further anatomical characteristics. The algorithm is applying directly a deformable template on the predetermined filtered region and therefore it is responsive and straightforward implementable. For accuracy considerations, we have employed a support vector machine classifier to determine the confidence level of the automated marking. The clinical tests were performed at the Cardiology Clinic of the County Emergency Hospital Timisoara and they improved the physicians perception in more than 50% of the cases. The report is concluded with medical discussions.European Union (UE)Ministerio de Econom铆a y Competitividad (MINECO). Espa帽

    Numerical stability of spline-based Gabor-like systems

    Get PDF
    The paper provides a theorem for the characteriza- tion of numerical stability of spline-type systems. These systems are generated through shifted copies of a given atom over a time lattice. Also, we reformulate the well known Gabor systems via modulated spline-type systems and we apply the corresponding numerical stability to these systems. The numerical stability is tested for consistency against deformations.Austrian Science Fund (FWF) P2751

    A Neuro-Symbolic Classifier with Optimized Satisfiability for Monitoring Security Alerts in Network Traffic

    No full text
    We introduce in this paper a neuro-symbolic predictive model based on Logic Tensor Networks, capable of discriminating and at the same time of explaining the bad connections, called alerts or attacks, and the normal connections. The proposed classifier incorporates both the ability of deep neural networks to improve on their own through learning from experience and the interpretability of the results provided by the symbolic artificial intelligence approach. Compared to other existing solutions, we advance in the discovery of potential security breaches from a cognitive perspective. By introducing the reasoning in the model, our aim is to further reduce the human staff needed to deal with the cyber-threat hunting problem. To justify the need for shifting towards hybrid systems for this task, the design, the implementation, and the comparison of the dense neural network and the neuro-symbolic model is performed in detail. While in terms of standard accuracy, both models demonstrated similar precision, we further introduced for our model the concept of interactive accuracy as a way of querying the model results at any time coupled with deductive reasoning over data. By applying our model on the CIC-IDS2017 dataset, we reached an accuracy of 0.95, with levels of satisfiability around 0.85. Other advantages such as overfitting mitigation and scalability issues are also presented

    A Neuro-Symbolic Classifier with Optimized Satisfiability for Monitoring Security Alerts in Network Traffic

    No full text
    We introduce in this paper a neuro-symbolic predictive model based on Logic Tensor Networks, capable of discriminating and at the same time of explaining the bad connections, called alerts or attacks, and the normal connections. The proposed classifier incorporates both the ability of deep neural networks to improve on their own through learning from experience and the interpretability of the results provided by the symbolic artificial intelligence approach. Compared to other existing solutions, we advance in the discovery of potential security breaches from a cognitive perspective. By introducing the reasoning in the model, our aim is to further reduce the human staff needed to deal with the cyber-threat hunting problem. To justify the need for shifting towards hybrid systems for this task, the design, the implementation, and the comparison of the dense neural network and the neuro-symbolic model is performed in detail. While in terms of standard accuracy, both models demonstrated similar precision, we further introduced for our model the concept of interactive accuracy as a way of querying the model results at any time coupled with deductive reasoning over data. By applying our model on the CIC-IDS2017 dataset, we reached an accuracy of 0.95, with levels of satisfiability around 0.85. Other advantages such as overfitting mitigation and scalability issues are also presented

    Explainable Machine Learning Solution for Observing Optimal Surgery Timings in Thoracic Cancer Diagnosis

    No full text
    In this paper, we introduce an AI-based procedure to estimate and assist in choosing the optimal surgery timing, in the case of a thoracic cancer diagnostic, based on an explainable machine learning model trained on a knowledge base. This decision is usually taken by the surgeon after examining a set of clinical parameters and their evolution in time. Therefore, it is sometimes subjective, it depends heavily on the previous experience of the surgeon, and it might not be confirmed by the histopathological exam. Therefore, we propose a pipeline of automatic processing steps with the purpose of inferring the prospective result of the histopathologic exam, generating an explanation of why this inference holds, and finally, evaluating it against the conclusive opinion of an experienced surgeon. To obtain an accurate practical result, the training dataset is labeled manually by the thoracic surgeon, creating a training knowledge base that is not biased towards clinical practice. The resulting intelligent system benefits from both the precision of a classical expert system and the flexibility of deep neural networks, and it is supposed to avoid, at maximum, any possible human misinterpretations and provide a factual estimate for the proper timing for surgical intervention. Overall, the experiments showed a 7% improvement on the test set compared with the medical opinion alone. To enable the reproducibility of the AI system, complete handling of a case study is presented from both the medical and technical aspects

    Timely-Automatic Procedure for Estimating the Endocardial Limits of the Left Ventricle Assessed Echocardiographically in Clinical Practice

    No full text
    In this paper, we propose an analytical rapid method to estimate the endocardial borders of the left ventricular walls on echocardiographic images for prospective clinical integration. The procedure was created as a diagnostic support tool for the clinician and it is based on the use of the anisotropic generalized Hough transform. Its application is guided by a Gabor-like filtering for the approximate delimitation of the region of interest without the need for computing further anatomical characteristics. The algorithm is applying directly a deformable template on the predetermined filtered region and therefore it is responsive and straightforward implementable. For accuracy considerations, we have employed a support vector machine classifier to determine the confidence level of the automated marking. The clinical tests were performed at the Cardiology Clinic of the County Emergency Hospital Timisoara and they improved the physicians perception in more than 50% of the cases. The report is concluded with medical discussions

    Towards a Model and Specification for Visual Programming of Massively Distributed Embedded Systems

    No full text
    Massively distributed embedded systems are rapidly emerging as a key concept for many modern applications. However, providing efficient and scalable decision making capabilities to such systems is currently a significant challenge. This paper proposes a model and a specification language to allow automated synthesis of distributed controllers, which implement and interact through formalisms of different semantics. The paper refers to a case study to illustrate the main capabilities of the proposed concept
    corecore